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Abstract. For a system with one degree of freedom, coherent states that are parametrized by
classical canonical action–angle variables are introduced. These states also possess continuity of
labelling, a resolution of unity, and temporal stability. The insistence on canonical action–angle
variables strongly restricts any remaining arbitrariness in the coherent state definition. Such states
are introduced for semibounded Hamiltonian operators having either a discrete or a continuous
spectrum. Hamiltonians that have both discrete and continuous parts in their spectrum are also
discussed.

1. Introduction

Coherent states are generally acknowledged to provide a close connection between classical
and quantum formulations of a given system. For convenience at this point, we consider only a
real two-parameter set of coherent states, say{|J, γ 〉}, J > 0, and−∞ < γ <∞. A suitable
set of requirements for these states is given, in association with a specific Hamiltonian operator
H, by

(a) Continuity:(J ′, γ ′) −→ (J, γ ) ⇒ |J ′, γ ′〉 −→ |J, γ 〉.
(b) Resolution of unity:11= ∫ |J, γ 〉〈J, γ | dµ(J, γ ).
(c) Temporal stability: e−iHt |J, γ 〉 = |J, γ + ωt〉, ω = constant.
(d) Action identity: 〈J, γ |H|J, γ 〉 = ωJ .

The first two requirements are standard, emphasizing the fact that the identity operator may
be understood in a restricted sense, namely as a projector onto a finite or infinite subspace. The
third requirement ensures that the time evolution of any coherent state is always a coherent state.
Observe, in this evolution,J remains constant whileγ increases linearly. These properties
are similar to the classical behaviour of action–angle variables. IfJ andγ denote canonical
action–angle variables, they would enter the classical action in the form

I =
∫ T

0
(J γ̇ − ωJ) dt. (1)
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In fact, the classical action functional can be viewed as the restricted evaluation of the quantum
action functional, namely

I =
∫ T

0

[
i〈J, γ | d

dt
|J, γ 〉 − 〈J, γ |H|J, γ 〉

]
dt (2)

for different paths{|J (t), γ (t)〉 : 06 t 6 T } lying in a two-dimensional manifold in Hilbert
space. Thus the fourth requirement simply codifies the fact that the two coordinates(J, γ ) are
canonical action–angle variables (it will follow that the kinematical term isJ γ̇ as needed).

Stationary variations of the classical action functional lead to the equations of motion
γ̇ = ω and J̇ = 0 with solutionsγ (t) = γ + ωt andJ (t) = J expressed in terms of their
initial values att = 0. Normally, the states|J, γ +ωt〉 would be an approximation to the true
quantum temporal evolution, but the third requirement asserts that the path in Hilbert space
represented by{|J, γ + ωt〉 : 0 6 t 6 T } is actually the true quantum temporal evolution
for the quantum HamiltonianH. Thus, the restricted quantum action functional in this case is
exact[1]; a wider set of variational paths that all start at|J, γ 〉 at t = 0 inevitably leads to the
same extreme path. As we shall see, we are able to find coherent states{|J, γ 〉} that satisfy the
four requirements for a large class of systems with Hamiltonian operators,H, having either
a discrete or continuous spectrum. In a certain sense, we can also deal with a Hamiltonian
having both a discrete and continuous spectrum, and in this case, for convenience, we do not
impose the fourth requirement. Of course, temporal stability and action identity are minimal
requirements which may need to be weakened when dealing with different parts of the spectral
resolution ofH, as it could be for instance for multiple-band hamiltonians. We shall encounter
an example of such an adaptation in section 3, where we modify the action parameter of the
coherent state,J → s(J ), and we could do the same for the time evolution of the ‘angle’,
γ + ωt → γ (t) if necessary.

In earlier work, one of the authors (JRK) discussed systems of coherent states characterized
by only the first three requirements given above [2–4]. It was found that many distinct coherent-
state families could be found for any given Hamiltonian with discrete spectrum. It is noteworthy
that the addition of the fourth requirement selects one coherent-state family from the many
possible ones, up to a possible remaining freedom in the choice of measure dµ(J, γ ) resulting
from a classical moment problem.

It should be noted that Nieto and co-workers [5] have also studied coherent states for very
general potentials. However, their results have validity only to the lowest ¯h dependence,i.e.,
they are semi-classical in character. By contrast, the coherent states presented in this paper
lead to canonical action–angle variables that are valid forall values, namely, small values deep
in the quantum region as well as large values. We also note that coherent states for a continuous
spectrum have been previously considered; see, e.g., [6].

In section 2 we study the case for a discrete spectrum. In section 3, we deal with the
case of a continuous spectrum. Finally, in section 4 we examine systems with both a discrete
spectrum and continuous spectrum. The present work is motivated by potential applications to
the hydrogen atom and to more general atomic systems for which experimental elaboration of
such coherent states can be conceived as attainable; however such questions are not discussed
in this paper. We generally use units in which ¯h = 1.

2. Coherent states for discrete dynamics

Choose a HamiltonianH with a discrete spectrum which is bounded below and has been
adjusted so thatH > 0. For convenience in our presentation, we assume that the eigenstates
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of H are non-degenerate. The eigenstates|n〉 are orthonormal vectors that satisfy

H|n〉 = En|n〉, n > 0 (3)

0= E0 < E1 < E2 < · · · . (4)

Examples where liml→∞ El = ∞ and liml→∞ El = E? < ∞ will both be of interest.
(Generalization of the requirement thatE0 = 0 will appear subsequently; inclusion of level
degeneracy is discussed in [4].)

We let En = ωen(= h̄ωen), ω > 0 and fixed, and thereby introduce a sequence of
dimensionless real numbers 0= e0 < e1 < e2 < · · ·. As a preliminary step we first define
coherent states of the form

|J, γ 〉 = N(J )−1
+∞∑
n=0

J n/2 exp(−ienγ )√
ρn

|n〉 (5)

where 06 J and−∞ < γ < +∞, andN(J ) denotes a normalization chosen so that

〈J, γ |J, γ 〉 = N(J )−2
+∞∑
n=0

J n

ρn
≡ 1. (6)

Thus

N(J )2 ≡
+∞∑
n=0

J n

ρn
. (7)

The domain of allowedJ , 0 6 J < R, is determined by the radius of convergence
R = limn→∞ n

√
ρn in the series definingN(J )2. The radius of convergence may be finite

(non-zero) or infinite, depending on the behaviour ofρn for largen. These positive constants
ρn are assumed to arise as the moments of a probability distribution, namely,

ρn ≡
∫ R

0
unρ(u) du ρ(u) > 0. (8)

We assume all moments exist:ρ0 = 1 andρn < +∞, for all n.
We take up the resolution of unity next. To that end, we define∫
· · · dν(γ ) ≡ lim

0→∞
1

20

∫ 0

−0
· · · dγ (9)

and we consider∫
|J, γ 〉〈J, γ | dν(γ ) = lim

0→∞
1

20

∫ 0

−0
N(J )−2

∞∑
m,n=0

J (m+n)/2 exp(−iγ (em−en))√
ρmρn

|m〉〈n| dγ

= N(J )−2
∞∑
n=0

J n

ρn
|n〉〈n|. (10)

To complete the derivation of the resolution of unity, we first define

k(J ) ≡ N(J )2ρ(J ) > 0 06 J < R (11)

k(J ) ≡ ρ(J ) ≡ 0 J > R (12)

which trivially implies for the weighted integral overJ , 06 J < R,

1

ρn

∫ R

0
N(J )−2J nk(J ) dJ = 1. (13)
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Since the sum and integral may be interchanged, as expectations in a general state confirm, we
verify that ∫ R

0
k(J ) dJ

∫
|J, γ 〉〈J, γ | dν(γ ) =

∞∑
n=0

|n〉〈n| = 11. (14)

We have thus established the resolution of unity with dµ(J, γ ) = k(J ) dJ dν(γ ), 06 J < R

and−∞ < γ < +∞. Temporal stability follows easily. SinceEn = ωen for all n, we find
that

e−iHt |J, γ 〉 = N(J )−1
∞∑
n=0

J n/2 exp(−ienγ − iEnt)√
ρn

|n〉 = |J, γ + ωt〉. (15)

Thus we have defined coherent states that satisfy the first three requirements, and we find many
possible solutions as represented by the various choices ofρ(u) one could select.

To deal with the fourth requirement, we define

H(J, γ ) ≡ 〈J, γ |H|J, γ 〉 = N(J )−2
∞∑
n=0

EnJ
n

ρn
= ω

∑∞
n=0 enJ

n/ρn∑∞
n=0 J

n/ρn
. (16)

To satisfy the last requirement we demand that
∞∑
n=0

enJ
n

ρn
= J

∞∑
n=0

J n

ρn
. (17)

Recalling thate0 = 0, this requiresen = ρn/ρn−1. Along with ρ0 = 1, this relation leads to

ρn = e1e2e3 · · · en (18)

which is the unique criterion for the set of moments{ρn} to lead to the desired relation that
H(J, γ ) = 〈J, γ |H|J, γ 〉 = ωJ .

It should be noted that the above factorization formula (18) has already appeared in various
previous generalizations of analytical coherent states (see for instance [10] and references
therein), specially in works related withq-deformations andq-special functions, where
en = (qn−q−n)/(q−q−1) ≡ [n]q andρn = [n]q !. Such a formula has also been proposed by
one of the authors [9] for arbitrary increasing sequences of positive numbersen. However, its
relevance in quantum physics is fully understood in the present contextbecauseof the relaxing
of the analyticity condition on the coherent states.

As a related remark, we also evaluatei〈J, γ |d|J, γ 〉, where

d|J, γ 〉 ≡ |J + dJ, γ + dγ 〉 − |J, γ 〉.
Since|J, γ 〉 is a normalized vector, the quantity in question is real. Hence, we are assured that
the coefficient of dJ vanishes and we concentrate just on dγ . With this restriction,

d|J, γ 〉 = (−i dγ )N(J )−1
∞∑
n=0

enJ
n/2 exp(−ienγ )√

ρn
|n〉 (19)

and therefore

i〈J, γ |d|J, γ 〉 = dγ N(J )−2
∞∑
n=0

enJ
n

ρn
= J dγ (20)

as necessary.
As a first example, let us examine the harmonic oscillator for which

H|n〉 = ωn|n〉 i.e. en = n (21)
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for all 06 n < +∞. For this example, the present coherent states,

|J, γ 〉 = N(J )−1
∞∑
n=0

J n/2e−inγ

√
n!
|n〉 N(J )2 = eJ (22)

are just the usual canonical coherent states

|z〉 ≡ e−
1
2 |z|2

∞∑
n=0

zn√
n!
|n〉 (23)

with z ≡ √Je−iγ . We note further, in this case, that the radius of convergenceR = ∞ and
that ρ(J ) = e−J and hencek(J ) = 1. Furthermore, in this case, due to the nature of the
spectrum, it suffices to choose dν(γ ) = dγ /2π for−π 6 γ < π , which already provides the
necessary projection ofm 6= n terms in the resolution of the unity.

Thus the present four requirements have uniquely led to the usual coherent states for the
harmonic oscillator. Additional sets of coherent states appropriate to Hamiltonians for which
limn→∞ En = ∞ will be treated elsewhere [7].

Let us next consider an example for which limn→∞ En = E? <∞. As our example, we
choose a Coulomb-like spectrum [8] and consider the unit operator as the projector onto the
subspace generated by the discrete spectrum only.

En−1 ≡ ω
[
1− 1

n2

]
n > 1 (24)

en−1 = 1− 1

n2
= (n + 1)(n− 1)

n2
(25)

with a constant added so thatE0 = 0. In this case

ρn = e1e2 · · · en = 3

4
× 8

9
· · · n(n + 2)

(n + 1)2
= 1

2

(n + 2)

(n + 1)
. (26)

Therefore, limen = 1 and limρn = 1
2 asn → ∞. This means the radius of convergence in

the present case isR = 1, i.e. 06 J < 1. In addition,

N(J )2 = 2

J

[
1

1− J +
ln (1− J )

J

]
(27)

ρ(u) = 1

2

[
1 + δ(u− 1−)

]
06 u < 1 (28)

and we observe that∫ 1

0
N(J )−2J n[N(J )2ρ(J )] dJ = ρn (29)

as required.
Thus we have obtained a set of coherent states of the form

|J, γ 〉 = N(J )−1
∞∑
n=0

√
2n + 2

n + 2
J n/2 exp

(
−i

[
1− 1

(n + 1)2

]
γ

)
|n〉. (30)

It follows that

e−iHt |J, γ 〉 = |J, γ + ωt〉 (31)

as required, and also that

〈J, γ |H|J, γ 〉 = ωN(J )−2
∑

(
2n + 2

n + 2
)J n

[
1− 1

(n + 1)2

]

≡ ω
∑(

2n + 2

n + 2

)
n(n + 2)

(n + 1)2
J n

(∑(
2n + 2

n + 2

)
J n

)−1

= ωJ (32)
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which establishes that the coherent states for this Coulomb-like model satisfy our four
requirements.

Remark. It would be of interest to extend these states to degenerate levels, in the manner
of [4], and compare the resultant coherent states for the (bound state portion of the) hydrogen
atom with coherent states having alternative definitions.

If one does not choose to setE0 = 0, then it is possible to consider

e−iHt |J, γ 〉 = exp(−iE0t) exp(−i(H− E0)t) |J, γ 〉 = exp(−iE0t) |J, γ + ωt〉 (33)

which although not identical to the third requirement would constitute a modest generalization.

3. Coherent states for continuum dynamics

LetH > 0 be a Hamiltonian with a non-degenerate continuous spectrum, and let|E〉 denote
the formal (delta-function normalized) states for which

H|E〉 = ωE|E〉 0< E < Ē (34)

whereĒ <∞ or Ē = ∞ are both of interest. In the present case we abusively denote|J, γ 〉
by |s(J ), γ 〉, wheres = s(J ) > 0 is to be determined, and we set

|s, γ 〉 ≡ M(s)−1
∫ Ē

0

sEe−iγE

f (E)
|E〉 dE (35)

wheref (E) is specified below. Insisting that〈s, γ |s, γ 〉 = 1 leads to

M(s)2 =
∫ Ē

0

s2E

f (E)2
dE (36)

for 06 s < S, whereS = lim s for all s for whichM(s)2 <∞. EitherS <∞ or S = ∞.
We next construct a resolution of identity from these states. To that end consider first∫ +∞

−∞
|s, γ 〉〈s, γ | dγ

2π

= M(s)−2
∫ +∞

−∞

∫ Ē

0

∫ Ē

0

sE+E′ exp
(−iγ (E − E′))

f (E)f (E′)
|E〉〈E′| dγ

2π
dE dE′

= M(s)−2
∫ Ē

0

s2E

f (E)2
|E〉〈E| dE. (37)

Next we introduce a non-negative weight functionσ(s) > 0 (for example, exp(−sα) , 0<
α) such that ∫ S

0
s2Eσ(s) ds ≡ f (E)2 (38)

for non-negativeσ(s) > 0. This equation implicitly defines allowedf (E), and 0< f (E) <

∞, for 0< E < Ē. With dµ(s, γ ) ≡ (1/2π)M(s)2σ(s) ds dγ we have∫
|s, γ 〉〈s, γ | dµ(s, γ ) =

∫ S

0
ds M(s)2σ(s)

∫ +∞

−∞
|s, γ 〉〈s, γ | dγ

2π

=
∫ Ē

0
|E〉〈E| dE = 11 (39)

as desired.
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Temporal stability follows immediately, since

e−iHt |s, γ 〉 = M(s)−1
∫ Ē

0

sEe−iE(γ+ωt)

f (E)
|E〉 dE = |s, γ + ωt〉. (40)

To generate such coherent states, it is easiest to start withσ(s), definef (E), and then
find the normalization factorM(s)2. In this way, whole families of coherent states can be
generated. There remains only to find the consequences of imposing the fourth requirement.

We consider

H(s) ≡ 〈s, γ |H|s, γ 〉 = M(s)−2
∫ Ē

0

Es2E

f (E)2
dE = s ∂

∂s
lnM(s). (41)

If we setY (s) ≡ lnM(s), then

H(s) = s ∂
∂s
Y (s). (42)

In general,H(s) 6= ωs as the fourth requirement wants, but that only means we have chosen
the wrong variable. Therefore, let us set

ωJ ≡ H(s) (43)

and assume this relation is uniquely invertible, leading to

s = s(J ). (44)

The condition for invertibility is that

H ′(s) = (sY ′(s))′ > 0 (45)

for all s (it is also possible to haveH ′(s) < 0). For example, ifY (s) = sα, α > 0,
thenH ′(s) = α2sα−1 > 0 as required. Let us assume we can finds = s(J ) such that
H(s) = H(s(J )) = ωJ , which amounts to solve the following integral equation (equivalent
to (41)) for a given admissiblef (E):

exp

(
−2ω

∫
ln s(J ) dJ

)
=
∫ Ē

0

s(J )2(E−ωJ)

f (E)2
dE. (46)

We now recapitulate the specification of the coherent states for a system with a non-
degenerate, continuum spectrumE > 0. We define

|J, γ 〉 ≡ P(J )−1
∫ Ē

0

s(J )Ee−iγE

f (E)
|E〉 dE (47)

P(J )2 ≡ M(s(J ))2 =
∫ Ē

0

s(J )2E

f (E)2
dE (48)

and observe withτ(J ) dJ ≡ σ(s(J )) ds(J ) andS = s(J̄ ), i.e. J̄ = H(S), that

1

2π

∫ +∞

−∞
dγ

∫ J̄

0
|J, γ 〉〈J, γ |P(J )2τ(J ) dJ =

∫ Ē

0
|E〉〈E| dE = 11 (49)

as desired. Temporal stability follows as before since

e−iHt |J, γ 〉 = P(J )−1
∫ Ē

0

s(J )Ee−iE(γ+ωt)

f (E)
|E〉 dE = |J, γ + ωt〉. (50)

Finally, we observe that

〈J, γ |H|J, γ 〉 = ω
∫ Ē

0

(
Es(J )2E/f (E)2

)
dE∫ Ē

0

(
s(J )2E/f (E)2

)
dE
= ωJ (51)
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as required. Conditions for these relations to hold are thatτ(J ) > 0 andH ′(s) > 0 (or< 0),
which have already been assumed.

There are some similarities and some differences in the cases for a discrete or continuum
spectrum. For the discrete case the dependence onJ throughJ n/2 is ‘natural’ while the
dependence onγ through exp(−ienγ ) is ‘unnatural’. (Un)naturalness is here understood by
comparison with the standard case. In the same sense, in the continuum case, the dependence
on J throughs(J )E is unnatural while the dependence onγ through e−iEγ is natural. Only
the harmonic oscillator has a natural dependence on bothJ andγ , while that is not the case
in general. Another important difference in the two cases is that for a discrete spectrum one
needs ∫

(·) dν(γ ) ≡ lim
0→∞

1

20

∫ 0

−0
(·) dγ (52)

which denotes anaverageover a wide, flat distribution. For the continuous spectrum, on the
other hand, one uses

1

2π

∫ +∞

−∞
(·) dγ (53)

which illustrates a relative scale factor in the integration measure forγ of 0 (or∞) between
the two measures. Finally, we observe in the discrete case that the coherent states were
determined uniquely by the four requirements, while for the continuous case some freedom
remains, specifically in choosingσ(u)so that, ultimately,J = H(s)/ω admits a unique inverse.
Of course, this arbitrariness arises because we permit ourselves a final change of parameters
s → J .

Suppose, like the discrete case, we started straight away with the proposal that

|J, γ 〉〉 = Q(J)−1
∫ ∞

0

JE/2e−iγE

f (E)
|E〉 dE (54)

and insisted that

〈〈J, γ |H|J, γ 〉〉 = ω
∫ (
EJE/f (E)2

)
dE∫ (

JE/f (E)2
)

dE
= ωJ. (55)

For this relation to hold it is necessary that

J
∂

∂J
ln
∫
JEg(E) dE = J (56)

whereg(E) = 1/f (E)2. This differential equation admits the solution∫
JEg(E) dE = eJ (57)

from which it follows that

g(E) =
∞∑
n=0

1

n!
δ(E − n) = 1

f (E)2
. (58)

Although we have obtained a unique result in this fashion, we deem it to be unacceptable,
because it leads to states|J, γ 〉〉 that do not even span the Hilbert space let alone fulfill a
resolution of unity, and are poorly defined as well.
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4. Coherent states for discrete and continuous dynamics

In sections 2 and 3 we have developed coherent states separately for systems with discrete
spectra and for systems with continuous spectra. Now we wish to join the two in order
to be able to discuss the case of a HamiltonianH that possesses both spectral types. We
do so in a relatively straightforward manner using states of each kind for their respective
subspaces. We use the original notation|J, γ 〉 for discrete-spectrum coherent states, and, for
purposes of this section, we use the notation|K, δ〉 for continuous-spectrum coherent states
(replacing the former|J, γ 〉 notation). As coherent states for the combined system we choose
theunnormalizedstates

|J, γ ;K, δ;φ〉 = f (K, δ)|J, γ 〉 + e−iφg(J, γ )|K, δ〉 (59)

wheref andg are scalar functions to be determined. Continuity of the combined coherent
states follows from continuity of the separate states and of the functionsf andg, which we
now assume.

The resolution of unity, namely∫
|J, γ ;K, δ;φ〉〈J, γ ;K, δ;φ| dλ(J, γ ;K, δ;φ) = 11 (60)

which is the direct sum of11D (discrete) and11C (continuous) that apply in the separate spaces,
may be achieved as follows. There are several ingredients, specifically three, that need to be
satisfied. They are∫

|f (K, δ)|2|J, γ 〉〈J, γ | dλ = 11D (61)∫
|g(J, γ )|2|K, δ〉〈K, δ| dλ = 11C (62)∫
eiφ
∫
g(J, γ )?f (K, δ)|J, γ 〉〈K, δ| dλ = 0 (63)

as well as the adjoint of the last relation. It is natural to choose

dλ(J, γ ;K, δ;φ) = dµD(J, γ )dµC(K, δ)dφ/2π (64)

as a product measure. In that case, the three conditions take the form∫
|f (K, δ)|2 dµC(K, δ) = 1 (65)∫
|g(J, γ )|2 dµD(J, γ ) = 1 (66)

while integration overφ, 06 φ < 2π , eliminates the unwanted off-diagonal terms.
In particular, let us choose

g(J, γ ) ≡ Ng exp
(−J 2

)
(67)

where the factorNg is chosen to ensure that

N2
g

∫
exp

(−2J 2
)

dµD(J, γ ) = 1. (68)

Further, we set

f (K, δ) = Nf exp
(−K2 − δ2

)
(69)
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and chooseNf so that

N2
f

∫
exp

(−2K2 − 2δ2
)

dµC(K, δ) = 1. (70)

Thus we have ensured the existence of a resolution in the combined space.
To deal with temporal stability we assume that 06 HD 6 �, as in the Coulomb-like

problem of section 2, and, as a consequence,� < HC . This meshing of the two spectra means
that we must appeal to utilizing the additional phase factor. Thus we find

e−iHt |J, γ ;K, δ;φ〉 = f (K, δ)|J, γ + ωt〉 + e−i(φ+�t)g(J, γ )|K, δ + ωt〉
= |J, γ + ωt;K, δ + ωt;φ +�t〉 (71)

which remains a coherent state and exhibits temporal stability.
Finally, we note that the action identity seems to be difficult to obtain with the combined

coherent states, at least in any straightforward fashion, and we do not pursue that issue further.

Acknowledgments

Part of this work was done when JRK visited the Laboratoire de Physique Théorique de la
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